\square

B.M.S COLLEGE FOR WOMEN, AUTONOMOUS BENGALURU -560004

END SEMESTER EXAMINATION - APRIL/ MAY 2023

M.Sc. Mathematics - III Semester

NUMERICAL ANALYSIS- II

Course Code MM305T

Duration: 3 Hours

QP Code: 13005
Max. Marks: 70

Instructions: 1) All questions carry equal marks.

2) Answer any five full questions.
1. (a) Establish Picard's iteration method for $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$. Find the first four successive non-zero approximation of $y^{\prime}=x+y, y(0)=1$ and obtain $y(0.5)$.
(b) Obtain an approximation for $y^{\prime}=x-y^{2}, y(0)=1$ at $x=0.1$ by finding five non-zero terms in the Taylor series.
2. (a) Show that the Range-Kutta methods are relatively stable.
(b) Solve the following system of differential equations using second order Runge Kutta method: $\frac{d y}{d x}=z+1, \frac{d z}{d x}=y-x ; y(0)=1, z(0)=1$ for $x=0.2$, take $h=$ 0.1 .
3. (a) Derive Adam Bashforth third order method to solve the differential equation $y^{\prime}=$ $f(x, y)$,
subjected to the condition $y\left(x_{0}\right)=y_{0}$.
(b) Solve the initial value problem $y^{\prime}=-2 x y^{2}, \mathrm{y}(0)=1$ with $h=0.2$ on the interval [$0,0.4$], using the predictor -corrector method.
4. (a) Solve the boundary value problem $y^{\prime \prime}=x y, y(0)+y^{\prime}(0)=1, y(1)=1$ with $h=\frac{1}{3}$ by using finite difference method.
(b) Solve $y^{\prime \prime}+y^{\prime}+1=0,0 \leq x \leq 1, y(0)=0, y(1)=0$, with $h=0.5$ using Cubic spline methods.
5. (a)Solve the Laplace equation $u_{x x}+u_{y y}=0,0 \leq x, y \leq 1$ subject to the condition $u(x, 0)=x, u(x, 1)=0, u(0, y)=0, u(1, y)=0$. Choose $\Delta x=\Delta y=\frac{1}{3}$, using five point formula.
(b) Solve the Poisson equation $u_{x x}+u_{y y}=x^{2}+y^{2}$ with $0 \leq x, y \leq 1$ and $u=0$ on the boundary of the unit square, choose $\Delta x=\Delta y=\frac{1}{3}$.
6. Derive the ADI method and show that the method is unconditionally stable.
7. (a) Solve $\frac{\partial^{2} u}{\partial t^{2}}=4 \frac{\partial^{2} u}{\partial x^{2}}$ explicitly with the initial and boundary conditions $u(x, 0)=$ $x^{2}\left(1-x^{2}\right), u_{t}(x, 0)=0, u(0, t)=u(1, t)=0$ with $\Delta x=\frac{1}{4}, \Delta t=\frac{1}{64}$. Obtain the solution at first time level.
(b) Explain Crank Nicolson method and prove that stability on this method is unconditionally stable.
8. Find the solution of $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}, 0 \leq x, y \leq 1$ with conditions $u(x, y, 0)=$ $\sin \pi x \sin \pi y ; \frac{\partial u}{\partial t}=0$ and $u=0$ on the boundary. Take $\Delta x=\Delta y=\frac{1}{2}, \Delta t=\frac{1}{4}$.
Perform one time integration using first Lee's alternating direction implicit method.
