UUCMS No.

B.M.S COLLEGE FOR WOMEN, AUTONOMOUS

BENGALURU -560004

END SEMESTER EXAMINATION – APRIL/ MAY 2023

M.Sc. Mathematics – III Semester

NUMERICAL ANALYSIS- II

Course Code MM305T Duration: 3 Hours

QP Code: 13005 Max. Marks: 70

Instructions: 1) All questions carry equal marks. 2) Answer any five full questions.

- (a) Establish Picard's iteration method for y' = f(x, y), y(x₀) = y₀. Find the first four successive non-zero approximation of y' = x + y, y(0) = 1 and obtain y(0.5).
 (b) Obtain an approximation for y' = x y², y(0) = 1 at x = 0.1 by finding five non-zero terms in the Taylor series. (7+7)
- 2. (a) Show that the Range-Kutta methods are relatively stable.
 (b) Solve the following system of differential equations using second order Runge Kutta method: dy/dx = z + 1, dz/dx = y x; y(0) = 1, z(0) = 1 for x = 0.2, take h = 0.1.
- 3. (a) Derive Adam Bashforth third order method to solve the differential equation y' = f(x, y),

subjected to the condition $y(x_0) = y_0$.

(b) Solve the initial value problem $y' = -2xy^2$, y(0)=1 with h = 0.2 on the interval [0,0.4], using the predictor -corrector method. (7+7)

- 4. (a) Solve the boundary value problem y'' = xy, y(0) + y'(0) = 1, y(1) = 1 with $h = \frac{1}{3}$ by using finite difference method.
 - (b) Solve $y'' + y' + 1 = 0, 0 \le x \le 1, y(0) = 0, y(1) = 0$, with h = 0.5 using Cubic spline methods. (7+7)
- 5. (a)Solve the Laplace equation $u_{xx} + u_{yy} = 0, 0 \le x, y \le 1$ subject to the condition u(x, 0) = x, u(x, 1) = 0, u(0, y) = 0, u(1, y) = 0. Choose $\Delta x = \Delta y = \frac{1}{3}$, using five point formula.

(b) Solve the Poisson equation $u_{xx} + u_{yy} = x^2 + y^2$ with $0 \le x, y \le 1$ and u = 0on the boundary of the unit square, choose $\triangle x = \triangle y = \frac{1}{3}$. (7+7)

6. Derive the ADI method and show that the method is unconditionally stable. (14)

- 7. (a) Solve ∂^{2u}/∂t² = 4 ∂^{2u}/∂x² explicitly with the initial and boundary conditions u(x, 0) = x²(1 x²), u_t(x, 0) = 0, u(0, t) = u(1, t) = 0 with △ x = 1/4, △ t = 1/64. Obtain the solution at first time level.
 (b) Explain Crank Nicolson method and prove that stability on this method is unconditionally stable. (7+7)
- 8. Find the solution of $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$, $0 \le x, y \le 1$ with conditions $u(x, y, 0) = sin\pi x sin\pi y$; $\frac{\partial u}{\partial t} = 0$ and u = 0 on the boundary. Take $\triangle x = \triangle y = \frac{1}{2}$, $\triangle t = \frac{1}{4}$. Perform one time integration using first Lee's alternating direction implicit method. (14)